
Revista Informatica Economică nr. 1(45)/2008

11

Neural Network Based Model Refinement

Adrian VIŞOIU
Academy of Economic Studies Bucharest

Economy Informatics Department

In this paper, model bases and model generators are presented in the context of model
refinement. This article proposes a neural network based model refinement technique for
software metrics estimation. Neural networks are introduced as instruments of model
refinement. A refinement technique is proposed for ranking and selecting input variables. A
case study shows the practice of model refinement using neural networks.
Keywords: model refinement, neural network, software metrics, model generators.

Model bases and model generators
Model bases are software structures for

managing models, generating models, mana-
ging datasets, managing modeling problem
definitions as shown in [IVAN05].
Model generators are software instruments
for obtaining models from a certain model
class given the list of variables, the model
structure, existence restrictions and datasets.
They also have an important place in the
refinement process flow.
Model classes group models with the same
structure, e.g. linear models, linear models
with lagged variables, nonlinear models. For
each class a model generator is developed as
a software module. Each dataset contains
data series for the recorded variables. The
dependent variable is specified and the
generator builds analytical expressions using
influence factors, coefficients, simple ope-
rators and functions. For each model
structure, coefficients are estimated and a
performance indicator is computed. The
resulting model list is ordered by the
performance indicator. The analyst chooses
between the best models an appropriate form
that later will be used in estimating the
studied characteristic.
Linear model generators take as input a
dataset containing a number of independent
variables and a dependent variable and
produce linear models by combining
influence factors.
The practice conducted to the elaboration of
linear models because: the studied
phenomena aim a linear dependence, the
parameter estimation methods are customary

for this type of models, the results
interpretation is lightened if the linearity
hypotheses are taken into account. The linear
generators take as input: the list of
independent variables, the dependent
variable, the dataset, restrictions about the
dimension and the complexity of the model,
performance criterion for all generated
models. The output consists of: the list of
generated models ordered by the perfor-
mance criterion.
In [VISO06] nonlinear generators are
described. Standard nonlinear model
generators use predefined analytical forms
for generating models. General nonlinear
model generators build automatically
analytical expressions containing influence
factors. The parameters for this process are:
the operand set, the coefficient set, the
operator set, the maximum complexity of the
generated expression. The nonlinear model
generator is suitable for modeling as the
phenomena do not always follow linear laws.
The linear models generators with delayed
arguments allow the elaboration of
constructions which permit the modeling of
the multiple stimulation effects which are
found on short term in influences from all the
sets. The phenomenon evolution shows that
the factors differently influence the
dependent variable. More, the variation at a
moment t of a factor spread them with a
delay abroad the evolution of the dependent
variable. The delayed arguments model
generator takes the same inputs, as the linear
generator, but it also does not only
combinations of variables, but also

1

Revista Informatica Economică nr. 1(45)/2008

12

combinations of delays for the variables
included in a certain model. As a new
parameter for this algorithm, the maximum
allowed delay is taken.
Model generators are important instruments
for the different refinement methods, but also
generally for model design.
Artificial neural networks are nonlinear
models used as modern instruments for:
− regression analysis
− classification
− data processing.
In this paper, neural network’s capacity to
estimate evolution of nonlinear phenomena is
used as instrument for model refinement and
variable list refinement.

2. Refinement using neural networks
In [IVAN05] the problem of building models
is presented in detail and in [VISO05] the
problem of software quality estimation
model refinement is treated in detail.
When used for regression analysis, neural
networks are considered nonlinear models
used estimate the level of a dependent
variable given the values for the independent
variables. The performance of neural
networks is, most of the time, better than
classic models. Its capacity is given by the
internal complexity. In the following, a feed
forward multilayered network with
backpropagation learning algorithm is taken
into account.
The network structure consists of connected
neuron layers. When estimating levels for
dependent variables the input layer takes the
input values. It has as many units as the
number of inputs.
The hidden layer is placed between the input
and the output layers. Each unit in the input
layer is connected to each unit in the hidden
layer. Further, each unit in the hidden layer is
connected to each unit in the output layer.
Connections transfer the output from a
source neuron as input to a destination
neuron, applying a weight.
The output layer consists of neurons
delivering the output of the network.

The inputs are all normalized in the (0, 1)
interval. The network also outputs a value in
(0, 1) interval. The value has to be de-
normalized before using the result, by
applying an inverse transformation. The
values for the considered inputs are real
positive numbers, bounded by zero and a
maximum value for each type of input.
Consider a network NNET consisting of three
layers, an input layer with n units, a hidden
layer with h hidden units and an output layer
consisting of one unit. The activation
function is the Sigmoid function denoted by
f. Let wij denote the weight of the ith input in
the activation of jth unit in the hidden layer.
Let ujk denote the weight of output of the jth
hidden in the activation of kth output unit.
The inputs are denoted by I1, I2, …, In.
The activation for the jth hidden unit is given
by
Aj = w1j*I1+w2j*I2+...+wnj*In-Tj, j=1,h
and it has:
− 2n operators
− 2n+1 operands.
The complexity in Halstead sense of the
activation model for the jth unit is:
C(Aj) = 2nlog2 2n +(2n+1)log2(2n+1)
The output for the jth hidden unit is given by
 Oj = f(Aj)=1/(1+e-Aj)
and it has:
− (2n+3) operators
− (2n+4) operands.
The complexity in Halstead sense for the
output model for the jth unit is:
C(Oj) =
(2n+3)log2(2n+3)+(2n+4)log2(2n+4)
The activation of the output unit r is given by
 Ar = u1r*O1+u2r*O2+...+ uhr*Oh-Tr
and there are:
− 2h + h*(2n+3)= 2nh+5h operators
− (h+1)+h(2n+4)= 2nh+5h+1 operands
The output of the network is:
 Or = f(Ar)=1/(1+e-Ar)
and it has:
− 2nh+5h+3 operators
− 2nh+5h+4 operands
In general, the model complexity for an
output of the network is

C(Or) = (2nh+5h+3)log2(2nh+5h+3)+(2nh+5h+4)log2(2nh+5h+4)

Revista Informatica Economică nr. 1(45)/2008

13

If the network has a number of R output
units, then for the output values there are R
models with C(Or) complexity.
When using neural networks, the number of
output units is established and it is a fixed
number because it is usually known what is
to be estimated. The number of hidden units
becomes fixed after an empirical study by
testing different values, or by an empirical
formula. The inputs are chosen among the
variables associated to the factors, the analyst
believes they influence the studied
phenomenon. In order to see the importance
of inputs in the overall complexity of the
network, table 1 is built,

Table no 1. Evolution of an output unit
model complexity for a network with n

inputs, where the number of hidden units
is fixed, h=10

Inputs
n

Operators
2n+5h+3

Operands
2n+5h+4

Complexity
C(Or)

1 73 74 911,36
2 93 94 1224,27
3 113 114 1549,63
4 133 134 1885,21
5 153 154 2229,47
6 173 174 2581,26
7 193 194 2939,73
8 213 214 3304,17
9 233 234 3674,02
10 253 254 4048,82
11 273 274 4428,18
12 293 294 4811,77
13 313 314 5199,29
14 333 334 5590,49
15 353 354 5985,16
16 373 374 6383,09
17 393 394 6784,11
18 413 414 7188,07
19 433 434 7594,82
20 453 454 8004,24

It is observed that after establishing the
outputs and hidden layer size, further model
refinement is necessary through reducing the
number of inputs.
The inputs are all normalized to (0, 1). In the
activation of jth hidden unit Aj, each input has

its own weight which shows the degree of
influence for that activation
Due to the fact that input variables influences
can be established and easily understood only
at input-to-hidden level, the after training
weights at input-to-hidden level are studied.
The input values for the independent
variables are normalized in the (0; 1)
interval. This way, the weights become
comparable. If a weight |wpj|>|wqj| the pth
variable from the input layer has more
significance in the activation of j hidden unit
than qth variable.
The technique for ranking the input variables
according to their influence in a model aims
decreasing the number of variables.
When building models, a number of factors
are considered to influence the studied
phenomenon and variables are associated to
them in the model structure. These factors
differ from their importance and some are
more important than others. To achieve
model refinement, the less important factors
have to be eliminated. When dealing with
nonlinear models it is difficult to assess each
factor’s importance. The proposed technique
uses neural networks as complex nonlinear
models to assess the importance of each
factor. Figure 1 shows a flow for model
refinement using neural networks, and the
place of this process in the refinement flow.

Figure 1 shows that the model M is to be
refined. The model M is from a certain model
class, CM. The analytical expression for the
model consists of a set of operators and a set
of operands. The operands are further
separated into a set of coefficients and a set
of variables, denoted by V. The variables in V
set correspond to influence factors. The V set
is an input for the neural network based
refinement that ranks the influence factors
and the analyst removes those variables
considered that they do not significantly
influence the studied phenomenon, obtaining
the reduced set of variables V’. The V’ set is
an input for a later model generation process.
The generation process uses as instrument a
model generator from the same class CM as
the initial model, obtaining the new model

Revista Informatica Economică nr. 1(45)/2008

14

M’ which is the refined model.
When using only neural networks for
estimation, only the independent variable list
and the dependent variable are needed. An
initial network INET is built, having NI=card

(V) inputs. Through refinement, the input list
is reduced to the V’ set, and further a second
network RNET with NR=card(V’) inputs is
built, where NR<NI, representing the refined
network.

Model M
of class
CM

Operators

Variables V

Coefficients

Neural Network
Refinement

Variables Model generation
Model M’
of class
CM

Neural Network
estimation

Model
processing

Fig.1. Model refinement flow using neural networks

Looking at the considered network
architecture, it is observed that each input is
connected to each hidden node. In the
activation Aj of the jth hidden node, each
input has a weight attached to it showing the
importance of that input for the activation.
All the inputs are normalized in (0; 1)
interval, and thus the weights of connections
to that unit are comparable from absolute
value point of view.
If |wfj|>|wgj|, for the activation of jth hidden
unit being a linear model, the input If,
associated to the f factor, has a greater
influence than the input Ig.
By summing up the absolute values of
weights from If to each hidden unit, an
indicator is obtained showing the total
absolute influence of input f, TAIf, given by:

TAIf = ∑
=

h

j 1
|wfj|

where h is the number of hidden units.
An initial ordering of influence factors can be
done by this indicator. The analyst can
choose the first k variables to be later used in

model building.
Further, in the activation of jth hidden unit
each input comes with its own weight. It is
needed to compute the relative weight of If in
the sum of weights of synapses to the jth unit
as:

w’fj =
∑
=

n

i

wij

wfj

1

||

||

This relative weight is used in computing the
total relative influence of If in the hidden
layer, as:

TRIf=∑
=

h

j 1
 w’fj

This indicator takes into account the
influence of If paying attention to the
magnitude of the influence reported to other
factors also. The independent variables can
be ordered by this indicator and the analyst
can choose among them, reducing the list of
variables.
The TRI values are further normalized. The
sum of total relative influence is computed

Revista Informatica Economică nr. 1(45)/2008

15

as:

TTRI = ∑
=

n

i 1
TRIi, where n is the number of

inputs.
Each TRI value is then divided by this sum,
obtaining the normalized total relative
influence as:
NTRIf = TRIf / TTRI, f=1,n.
This way the it is easier to choose the which
variables corresponding to NTRI values are
kept during the refinement as:

∑
=

n

i 1
NTRIi = 1.

The first N variables in the ordered list are
kept with the restriction:

∑
=

N

i 1
NTRIi< t, t∈ .(0,1), recommended value

used in this paper is t=0,85.
This aids the desicion of what variables to be
removed because there is an instrument.
As seen, the influence is assessed only at
input-to-hidden level. That is because further
than the first hidden layer, outputs contain
already influences from all the inputs and

cannot be separated.
It is observed that the refinement process has
an iterative character of the and the flow is
finite with respect to a performance criterion.

3. Case study
For a group of 35 specialists involved in
developing software modules in data
structures field, implementing sparse matrix
operations, data is collected regarding the
number of hours necessary for module
development, the number of errors
encountered during code writing, the
working experience in months in the field of
software development, data about their
performance as students, and metrics of the
source code for each module. The specialists
build up an homogenous sample based on
selection criteria: age, experience and
training.
The dataset resulted from the activity
analysis for the 35 specialists is presented in
table 2. Data collection has been done
automatically using software packages
software metrics oriented.

Table no 2. Complete dataset used for network training

WORK ERROR EXP MA M1 M2 LINES COMPLEXITY SID
9 16 72 7.89 8 7.91 79 15 DIAV
6 1 72 8.15 7.32 6.66 61 7 DIBC

3.5 20 72 9.93 10 9.92 20 18 DCS
6 42 48 9.15 8.4 8.7 64 46 DDSM
3 68 52 8.7 9.63 9.33 155 19 ERB
6 43 36 7.8 7.92 7.46 26 8 EVAB
4 55 48 9.48 9.7 9.5 85 7 ECEV
2 17 72 9.64 9.9 9.75 105 18 EICH
7 73 24 8.25 8 8.08 25 8 FMDDG

10 30 36 8.78 9 8.5 83 46 GVC
8.5 200 25 8.726 7.61 7.33 80 46 GML
6 14 10 9.14 8.68 8.25 54 9 LDA
1 15 20 9.43 7.7 8.58 9 6 LIA
3 10 10 7.6 7.85 7.7 62 32 LLAV
6 12 24 8.46 9.24 9.08 55 24 LVA
8 43 24 7 8.15 8.15 41 13 MDEC
5 24 60 8.02 7.35 7.08 39 4 MIII

1.5 7 24 7.4 7.23 7.12 63 32 MDRC
8 92 60 9.76 9.52 8.56 32 5 MMA
6 125 38 8.98 8.54 8.75 46 33 MCM

Revista Informatica Economică nr. 1(45)/2008

16

3 17 6 8.71 8.66 9.33 72 32 NGGF
5 7 72 9.5 9.65 9.75 64 10 NOA
8 14 60 7.98 7.53 7.33 94 9 NIIAA
2 13 120 9.19 7.33 7.72 48 7 NCE
4 12 86 8.2 8.14 7.53 58 11 NGAD
2 7 72 9.43 8.53 9.25 26 11 NCAC
4 32 24 6.76 7.49 7.69 42 8 OIIA
4 10 72 9.84 9.56 9.18 55 13 ONF
3 11 86 8.89 7.23 7.16 70 11 OIM
4 23 26 8.32 9.32 8.91 87 12 OIC
3 4 36 9.53 9.5 9.75 14 6 PVRI
8 30 72 8.74 9.04 9.08 77 9 PIVC
3 7 10 8.83 8.2 7.66 24 9 PAIV
3 30 48 7.8 7.9 7.6 88 9 PGC
5 14 84 8.66 8.09 9.24 118 12 JIAC

The software collection used for research
development and partial results can be found
at http://www.refinement.ase.ro.
The variables displayed in columns are
described as follows:
WORK – is the dependent variable
representing the amount of time, in hours,
necessary for developing a software module;
ERROR – the number of errors encountered
during development;
EXP – the experience in months of the
developer;
MA – the admission mean for the specialist in
the higher education institution
M1 - the mean after the first year of study; it
is interpreted as the level of basic knowledge
necessary in the field of computer
programming;
M2 – the mean after the second year of study;
it is interpreted as the level of specialized
knowledge in the field of computer
programming;
LINES – the number of source lines in the
developed module

COMPLEXITY – the cyclomatic complexity
of the developed module
SID – an identifier for each specialist; it is
not used as input but it is used for
information retrieval.
A model is needed for estimating the WORK
variable, as dependent variable, using the
other variables as independent variables. In
order to refine the model, independent
variables are ranked according to the
magnitude of their influence in estimating the
network output.
The network has seven inputs for the
independent variables values, one output for
the estimated variable and a hidden layer
consisting of 3 units, denoted N1, N2, and N3.
The activation function is sigmoid and the
learning algorithm uses backpropagation.
When learning the network training
continues until either an error threshold or a
maximum iteration is reached. After the
training is complete, the input-to-hidden
weights are displayed in table 3.

Table no.3 Input-to-hidden weights after network training

 N1 N2 N3
ERROR -0.3450461 -10.05542 8.041933
EXP -1.499351 8.842965 -3.005034
MA -7.080837 -0.2618634 -1.689898
M1 10.5699 -4.063118 10.30558
M2 -0.004750938 2.305199 -8.620939
LINES -3.306778 -16.34974 11.92956
COMPLEXITY 6.289078 -4.750813 -3.685927

Revista Informatica Economică nr. 1(45)/2008

17

In table 3 at the intersection between a line i
and a column j, the weight wij shows the
influence of the ith input in the activation of
the jth neuron. As the weights can have both
positive and negative values the absolute
values become important as they show the

magnitude of the influence. By summing up
the influence from each input i the TAIi total
absolute influence of that input is obtained.
Ranking the list of variables by this indicator,
an initial ordering is obtained as shown in
table 4.

Table no. 4. Absolute values for weights

 N1 N2 N3 Sum of weights Rank
ERROR 0.345046 10.055420 8.041933 18.442399 3
EXP 1.499351 8.842965 3.005034 13.347350 5
MA 7.080837 0.261863 1.689898 9.032598 7
M1 10.569900 4.063118 10.305580 24.938598 2
M2 0.004751 2.305199 8.620939 10.930889 6
LINES 3.306778 16.349740 11.929560 31.586078 1
COMPLEXITY 6.289078 4.750813 3.685927 14.725818 4

As seen in table 4, the ranking shows that the
ordering of variables associated to influence
factors is: LINES, M1, ERROR,
COMPLEXITY, EXP, M2, and MA.

To take into account the relative influence,
each weight in column j is divided by the
sum of weights in that column, the resulting
relative weights being shown in table 5.

Table no 5 Relative influences from input units to hidden units

 N1 N2 N3
ERROR 0.011859 0.215647 0.170096
EXP 0.051532 0.189645 0.063560
MA 0.243363 0.005616 0.035743
M1 0.363280 0.087137 0.217974
M2 0.000163 0.049437 0.182342
LINES 0.113652 0.350634 0.252323
COMPLEXITY 0.216151 0.101885 0.077961
TOTAL 1 1 1

Summing up the value for each line i, the
total relative influence TRIi of ith input is
obtained. Input variables can be ranked by
this criterion as shown in table 6.

Table no. 6. Variable ranking by means of
total relative influence ordering

Variable TRI Rank
ERROR 0.397601 3
EXP 0.304736 5
MA 0.284722 6
M1 0.668391 2
M2 0.231943 7
LINES 0.716609 1
COMPLEXITY 0.395998 4

As seen in table 6, the order of variables
according to factor importance in the studied
phenomenon is: LINES, M1, ERROR,
COMPLEXITY, EXP, MA, and M2. As the
neural network is assimilated to a nonlinear
model, a conclusion can be drawn that there
exists a nonlinear model to estimate WORK
variable built on those independent variables.
Ordering variables according to the resulting
rank can lead to the decision of removing
less important variables, obtaining:
- a decreased complexity of the network
leading to faster training and faster forward
propagation
- better understanding of influence factors
ranking for the studied phenomenon
- the result of variable ranking using neural

Revista Informatica Economică nr. 1(45)/2008

18

networks can be used as input for other
processes such as model generation.
Further, the variable list is reordered by their
relative influences. The normalized total

relative influence values, NTRI are computed
and also the cumulative sum, shown in table
7.

Table no. 7. Variable list ordered by TRI

Variable TRI NTRI
Cumulative

sum
LINES 0.716609 0.238870 0.238869531
M1 0.668391 0.222797 0.461667
ERROR 0.397601 0.132534 0.594200
COMPLEXITY 0.395998 0.131999 0.726200
EXP 0.304736 0.101579 0.827778
MA 0.284722 0.094907 0.922686
M2 0.231943 0.077314 1.000000
TOTAL 3 1 -

The chosen variables are those with the
cumulative sum less than 0,85: LINES, M1,
ERROR, COMPLEXITY, EXP.
Taking decisions based on the neural
networks is desired, but they lack in
transparency. It is difficult to argument a
decision to another person based on a neural
network because even if the inputs and
outputs are very clear for the majority of the
specialists, the transformations suffered by
the input data is hard to both to interpret and
explain. A regression model in the classical
acceptance, seen as an analytic expression is
far more explicit. It may not have the same
performance as a neural network but it is
transparent and can be more easily
interpreted and explained.
Refining the neural network reduces the
number of inputs necessary for estimation. If
the network is not further used for
estimation, the remained variables are used
as input for model generation, using a model
generator from a certain model class. If also a
neural network is used for estimation, a
second network is built having as inputs, the
variables obtained from refinement, training
is done and then validation is performed by
comparing the initial network error with the
second network error to see if the second
network performance is acceptable.

4. Conclusions
The proposed method is used directly for the

refinement of any software quality model in
which a list with many variables has been
defined, collecting of all data is done
automatically and the precision of the
estimates is kept in an interval when a sublist
of variables is used.
To trust neural network based refinement
methods, the analysts which build software
metrics will use classical refinement methods
simultaneously. Results are compared and it
is observed that neural network based
refinements are most of the time more
precise. The analyst will use just neural
networks only after validation.
Neural network based refinement is an
iterative process, the performance criterion
being given by the errors the refined model
generates as presented in [IVAN08].
Neural network based refinement is a new
research area and the study of refined models
must be further developed. The neural
network based refinement technologies will
be further developed including other types of
neural networks.
If the current research used homogenous sets
of C++ programs, research must be extended
for heterogeneous sets of programs as
problem typology and programming
languages.
All the refinement techniques are
implemented in an open software application
that is enriched with new refinement
components for each development stage. The

Revista Informatica Economică nr. 1(45)/2008

19

same way the modelbase is developed,
software must be designed for refined model
management, for user problem definition and
for the study of real life behavior of
refinement models.

Bibliography
[BODE02] Constanţa Bodea - Inteligenta
artificiala: calcul neuronal, Editura ASE,
Bucureşti 2002, ISBN 973594085X
[HILL06] Thomas HILL, Pavel LEWICHI -
Statistics: Methods and Applications: a
Comprehensive Reference for Science,
Industry and Data Mining, StatSoft Inc.2006,
ISBN 1884233597
[IVAN05] Ion IVAN, Adrian VIŞOIU - Baza
de modele economice, Editura ASE,
Bucureşti, 2005
[IVAN08] Ion IVAN, Adrian VIŞOIU –
Tehnici de rafinare a metricilor software.
Teorie şi practică, Editura ASE, Bucureşti
2008, to appear soon
[IVAN99] IVAN, Mihai POPESCU - Metrici
software, Editura Inforec, Bucureşti, 1999

[JUDD] J. Stephen JUDD - Neural Network
Design and the Complexity of Learning, MIT
Press 1990, ISBN 0262100452
[MATI05] Randall MATIGNON, Neural
Network Modeling Using SAS Enterprise
Miner, AuthorHouse 2005, ISBN
1418423416
[VISO05] Ion IVAN, Adrian VIŞOIU -
Rafinarea metricilor software, Economistul,
supliment Economie teoretică si aplicativă,
29 august 2005, nr.1947(2973)
[VISO06] Adrian VIŞOIU, Gabriel
GARAIS: Nonlinear model structure
generator for software metrics estimation,
The 37th International Scientific Symposium
of METRA, Bucharest, May, 26th - 27th,
2006, Ministry of National Defence,
published on CD
[VISO07] Adrian VIŞOIU - Performance
Criteria for Software Metrics Model
Refinement, Journal of Applied Quantitative
Methods, Volume 2, Issue 1, March 30, 2007

