
Revista Informatica Economică nr. 1(45)/2008 
 

11

Neural Network Based Model Refinement 
 

Adrian VIŞOIU  
Academy of Economic Studies Bucharest 

Economy Informatics Department 
 

In this paper, model bases and model generators are presented in the context of model 
refinement. This article proposes a neural network based model refinement technique for 
software metrics estimation. Neural networks are introduced as instruments of model 
refinement. A refinement technique is proposed for ranking and selecting input variables. A 
case study shows the practice of model refinement using neural networks. 
Keywords: model refinement, neural network, software metrics, model generators. 
 

Model bases and model generators 
Model bases are software structures for 

managing models, generating models, mana-
ging datasets, managing modeling problem 
definitions as shown in [IVAN05]. 
Model generators are software instruments 
for obtaining models from a certain model 
class given the list of variables, the model 
structure, existence restrictions and datasets. 
They also have an important place in the 
refinement process flow. 
Model classes group models with the same 
structure, e.g. linear models, linear models 
with lagged variables, nonlinear models. For 
each class a model generator is developed as 
a software module. Each dataset contains 
data series for the recorded variables. The 
dependent variable is specified and the 
generator builds analytical expressions using 
influence factors, coefficients, simple ope-
rators and functions. For each model 
structure, coefficients are estimated and a 
performance indicator is computed. The 
resulting model list is ordered by the 
performance indicator. The analyst chooses 
between the best models an appropriate form 
that later will be used in estimating the 
studied characteristic. 
Linear model generators take as input a 
dataset containing a number of independent 
variables and a dependent variable and 
produce linear models by combining 
influence factors. 
The practice conducted to the elaboration of 
linear models because: the studied 
phenomena aim a linear dependence, the 
parameter estimation methods are customary 

for this type of models, the results 
interpretation is lightened if the linearity 
hypotheses are taken into account. The linear 
generators take as input: the list of 
independent variables, the dependent 
variable, the dataset, restrictions about the 
dimension and the complexity of the model, 
performance criterion for all generated 
models. The output consists of: the list of 
generated models ordered by the perfor-
mance criterion. 
In [VISO06] nonlinear generators are 
described. Standard nonlinear model 
generators use predefined analytical forms 
for generating models. General nonlinear 
model generators build automatically 
analytical expressions containing influence 
factors. The parameters for this process are: 
the operand set, the coefficient set, the 
operator set, the maximum complexity of the 
generated expression. The nonlinear model 
generator is suitable for modeling as the 
phenomena do not always follow linear laws. 
The linear models generators with delayed 
arguments allow the elaboration of 
constructions which permit the modeling of 
the multiple stimulation effects which are 
found on short term in influences from all the 
sets. The phenomenon evolution shows that 
the factors differently influence the 
dependent variable. More, the variation at a 
moment t of a factor spread them with a 
delay abroad the evolution of the dependent 
variable. The delayed arguments model 
generator takes the same inputs, as the linear 
generator, but it also does not only 
combinations of variables, but also 
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combinations of delays for the variables 
included in a certain model. As a new 
parameter for this algorithm, the maximum 
allowed delay is taken. 
Model generators are important instruments 
for the different refinement methods, but also 
generally for model design. 
Artificial neural networks are nonlinear 
models used as modern instruments for: 
− regression analysis  
− classification 
− data processing. 
In this paper, neural network’s capacity to 
estimate evolution of nonlinear phenomena is 
used as instrument for model refinement and 
variable list refinement.  

 
2. Refinement using neural networks 
In [IVAN05] the problem of building models 
is presented in detail and in [VISO05] the 
problem of software quality estimation 
model refinement is treated in detail.   
When used for regression analysis, neural 
networks are considered nonlinear models 
used estimate the level of a dependent 
variable given the values for the independent 
variables. The performance of neural 
networks is, most of the time, better than 
classic models. Its capacity is given by the 
internal complexity. In the following, a feed 
forward multilayered network with 
backpropagation learning algorithm is taken 
into account. 
The network structure consists of connected 
neuron layers. When estimating levels for 
dependent variables the input layer takes the 
input values. It has as many units as the 
number of inputs.  
The hidden layer is placed between the input 
and the output layers. Each unit in the input 
layer is connected to each unit in the hidden 
layer. Further, each unit in the hidden layer is 
connected to each unit in the output layer. 
Connections transfer the output from a 
source neuron as input to a destination 
neuron, applying a weight. 
The output layer consists of neurons 
delivering the output of the network. 

The inputs are all normalized in the (0, 1) 
interval. The network also outputs a value in 
(0, 1) interval. The value has to be de-
normalized before using the result, by 
applying an inverse transformation. The 
values for the considered inputs are real 
positive numbers, bounded by zero and a 
maximum value for each type of input. 
Consider a network NNET consisting of three 
layers, an input layer with n units, a hidden 
layer with h hidden units and an output layer 
consisting of one unit. The activation 
function is the Sigmoid function denoted by 
f. Let wij denote the weight of the ith input in 
the activation of jth unit in the hidden layer. 
Let ujk denote the weight of output of the jth 
hidden in the activation of kth output unit. 
The inputs are denoted by I1, I2, …, In.   
The activation for the jth hidden unit is given 
by  
Aj = w1j*I1+w2j*I2+...+wnj*In-Tj, j=1,h 
and it has: 
− 2n operators 
− 2n+1 operands. 
The complexity in Halstead sense of the 
activation model for the jth unit is: 
C(Aj) = 2nlog2 2n +(2n+1)log2(2n+1)  
The output for the jth hidden unit is given by 
 Oj = f(Aj)=1/(1+e-Aj) 
and it has: 
− (2n+3) operators 
− (2n+4) operands. 
The complexity in Halstead sense for the 
output model for the jth unit is: 
C(Oj) = 
(2n+3)log2(2n+3)+(2n+4)log2(2n+4) 
The activation of the output unit r is given by  
 Ar = u1r*O1+u2r*O2+...+ uhr*Oh-Tr 
and there are: 
− 2h + h*(2n+3)= 2nh+5h operators 
− (h+1)+h(2n+4)= 2nh+5h+1 operands 
The output of the network is: 
 Or = f(Ar)=1/(1+e-Ar) 
and it has: 
− 2nh+5h+3 operators 
− 2nh+5h+4 operands 
In general, the model complexity for an 
output of the network is 

 
C(Or) = (2nh+5h+3)log2(2nh+5h+3)+(2nh+5h+4)log2(2nh+5h+4) 
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If the network has a number of R output 
units, then for the output values there are R 
models with C(Or) complexity. 
When using neural networks, the number of 
output units is established and it is a fixed 
number because it is usually known what is 
to be estimated. The number of hidden units 
becomes fixed after an empirical study by 
testing different values, or by an empirical 
formula. The inputs are chosen among the 
variables associated to the factors, the analyst 
believes they influence the studied 
phenomenon. In order to see the importance 
of inputs in the overall complexity of the 
network, table 1 is built,  
 

Table no 1. Evolution of an output unit 
model complexity for a network with n 

inputs, where the number of hidden units 
is fixed, h=10 

Inputs 
n 

Operators
2n+5h+3 

Operands 
2n+5h+4 

Complexity
C(Or) 

1 73 74 911,36 
2 93 94 1224,27 
3 113 114 1549,63 
4 133 134 1885,21 
5 153 154 2229,47 
6 173 174 2581,26 
7 193 194 2939,73 
8 213 214 3304,17 
9 233 234 3674,02 
10 253 254 4048,82 
11 273 274 4428,18 
12 293 294 4811,77 
13 313 314 5199,29 
14 333 334 5590,49 
15 353 354 5985,16 
16 373 374 6383,09 
17 393 394 6784,11 
18 413 414 7188,07 
19 433 434 7594,82 
20 453 454 8004,24 

 
It is observed that after establishing the 
outputs and hidden layer size, further model 
refinement is necessary through reducing the 
number of inputs. 
The inputs are all normalized to (0, 1). In the 
activation of jth hidden unit Aj, each input has 

its own weight which shows the degree of 
influence for that activation 
Due to the fact that input variables influences 
can be established and easily understood only 
at input-to-hidden level, the after training 
weights at input-to-hidden level are studied. 
The input values for the independent 
variables are normalized in the (0; 1) 
interval. This way, the weights become 
comparable. If a weight |wpj|>|wqj| the pth 
variable from the input layer has more 
significance in the activation of j hidden unit 
than qth variable.  
The technique for ranking the input variables 
according to their influence in a model aims 
decreasing the number of variables. 
When building models, a number of factors 
are considered to influence the studied 
phenomenon and variables are associated to 
them in the model structure. These factors 
differ from their importance and some are 
more important than others. To achieve 
model refinement, the less important factors 
have to be eliminated. When dealing with 
nonlinear models it is difficult to assess each 
factor’s importance. The proposed technique 
uses neural networks as complex nonlinear 
models to assess the importance of each 
factor. Figure 1 shows a flow for model 
refinement using neural networks, and the 
place of this process in the refinement flow.  

 
Figure 1 shows that the model M is to be 
refined. The model M is from a certain model 
class, CM. The analytical expression for the 
model consists of a set of operators and a set 
of operands. The operands are further 
separated into a set of coefficients and a set 
of variables, denoted by V. The variables in V 
set correspond to influence factors. The V set 
is an input for the neural network based 
refinement that ranks the influence factors 
and the analyst removes those variables 
considered that they do not significantly 
influence the studied phenomenon, obtaining 
the reduced set of variables V’. The V’ set is 
an input for a later model generation process. 
The generation process uses as instrument a 
model generator from the same class CM as 
the initial model, obtaining the new model 
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M’ which is the refined model.  
When using only neural networks for 
estimation, only the independent variable list 
and the dependent variable are needed. An 
initial network INET is built, having NI=card 

(V) inputs. Through refinement, the input list 
is reduced to the V’ set, and further a second 
network RNET with NR=card(V’) inputs is 
built, where NR<NI, representing the refined 
network. 

Model M 
of class 
CM 

Operators 

Variables V 

Coefficients 

Neural Network 
Refinement 

Variables Model generation
Model M’ 
of class 
CM 

Neural Network 
estimation

Model 
processing 

 
Fig.1. Model refinement flow using neural networks 

 
Looking at the considered network 
architecture, it is observed that each input is 
connected to each hidden node. In the 
activation Aj of the jth hidden node, each 
input has a weight attached to it showing the 
importance of that input for the activation. 
All the inputs are normalized in (0; 1) 
interval, and thus the weights of connections 
to that unit are comparable from absolute 
value point of view. 
If |wfj|>|wgj|, for the activation of jth hidden 
unit being a linear model, the input If, 
associated to the f factor, has a greater 
influence than the input Ig. 
By summing up the absolute values of 
weights from If to each hidden unit, an 
indicator is obtained showing the total 
absolute influence of input f, TAIf, given by: 

TAIf = ∑
=

h

j 1
|wfj| 

where h is the number of hidden units.  
An initial ordering of influence factors can be 
done by this indicator. The analyst can 
choose the first k variables to be later used in 

model building. 
Further, in the activation of jth hidden unit 
each input comes with its own weight. It is 
needed to compute the relative weight of If in 
the sum of weights of synapses to the jth unit 
as: 

w’fj = 
∑
=

n

i

wij

wfj

1

||

||  

This relative weight is used in computing the 
total relative influence of If in the hidden 
layer, as: 

TRIf=∑
=

h

j 1
 w’fj 

This indicator takes into account the 
influence of If paying attention to the 
magnitude of the influence reported to other 
factors also. The independent variables can 
be ordered by this indicator and the analyst 
can choose among them, reducing the list of 
variables. 
The TRI values are further normalized. The 
sum of total relative influence is computed 
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as: 

TTRI = ∑
=

n

i 1
TRIi, where n is the number of 

inputs. 
Each TRI value is then divided by this sum, 
obtaining the normalized total relative 
influence as: 
NTRIf = TRIf / TTRI, f=1,n. 
This way the it is easier to choose the which 
variables corresponding to NTRI values are 
kept during the refinement as: 

∑
=

n

i 1
NTRIi = 1. 

The first N variables in the ordered list are 
kept with the restriction: 

∑
=

N

i 1
NTRIi< t, t∈ .(0,1), recommended value 

used in this paper is t=0,85. 
This aids the desicion of what variables to be 
removed because there is an instrument. 
As seen, the influence is assessed only at 
input-to-hidden level. That is because further 
than the first hidden layer, outputs contain 
already influences from all the inputs and 

cannot be separated. 
It is observed that the refinement process has 
an iterative character of the and the flow is 
finite with respect to a performance criterion. 
 
3. Case study 
For a group of 35 specialists involved in 
developing software modules in data 
structures field, implementing sparse matrix 
operations, data is collected regarding the 
number of hours necessary for module 
development, the number of errors 
encountered during code writing, the 
working experience in months in the field of 
software development, data about their 
performance as students, and metrics of the 
source code for each module. The specialists 
build up an homogenous sample based on 
selection criteria: age, experience and 
training. 
The dataset resulted from the activity 
analysis for the 35 specialists is presented in 
table 2. Data collection has been done 
automatically using software packages 
software metrics oriented. 

 
Table no 2. Complete dataset used for network training 

WORK ERROR EXP MA M1 M2 LINES COMPLEXITY SID 
9 16 72 7.89 8 7.91 79 15 DIAV 
6 1 72 8.15 7.32 6.66 61 7 DIBC 

3.5 20 72 9.93 10 9.92 20 18 DCS 
6 42 48 9.15 8.4 8.7 64 46 DDSM 
3 68 52 8.7 9.63 9.33 155 19 ERB 
6 43 36 7.8 7.92 7.46 26 8 EVAB 
4 55 48 9.48 9.7 9.5 85 7 ECEV 
2 17 72 9.64 9.9 9.75 105 18 EICH 
7 73 24 8.25 8 8.08 25 8 FMDDG 

10 30 36 8.78 9 8.5 83 46 GVC 
8.5 200 25 8.726 7.61 7.33 80 46 GML 
6 14 10 9.14 8.68 8.25 54 9 LDA 
1 15 20 9.43 7.7 8.58 9 6 LIA 
3 10 10 7.6 7.85 7.7 62 32 LLAV 
6 12 24 8.46 9.24 9.08 55 24 LVA 
8 43 24 7 8.15 8.15 41 13 MDEC 
5 24 60 8.02 7.35 7.08 39 4 MIII 

1.5 7 24 7.4 7.23 7.12 63 32 MDRC 
8 92 60 9.76 9.52 8.56 32 5 MMA 
6 125 38 8.98 8.54 8.75 46 33 MCM 
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3 17 6 8.71 8.66 9.33 72 32 NGGF 
5 7 72 9.5 9.65 9.75 64 10 NOA 
8 14 60 7.98 7.53 7.33 94 9 NIIAA 
2 13 120 9.19 7.33 7.72 48 7 NCE 
4 12 86 8.2 8.14 7.53 58 11 NGAD 
2 7 72 9.43 8.53 9.25 26 11 NCAC 
4 32 24 6.76 7.49 7.69 42 8 OIIA 
4 10 72 9.84 9.56 9.18 55 13 ONF 
3 11 86 8.89 7.23 7.16 70 11 OIM 
4 23 26 8.32 9.32 8.91 87 12 OIC 
3 4 36 9.53 9.5 9.75 14 6 PVRI 
8 30 72 8.74 9.04 9.08 77 9 PIVC 
3 7 10 8.83 8.2 7.66 24 9 PAIV 
3 30 48 7.8 7.9 7.6 88 9 PGC 
5 14 84 8.66 8.09 9.24 118 12 JIAC 

 
The software collection used for research 
development and partial results can be found 
at http://www.refinement.ase.ro. 
The variables displayed in columns are 
described as follows: 
WORK – is the dependent variable 
representing the amount of time, in hours, 
necessary for developing a software module; 
ERROR – the number of errors encountered 
during development; 
EXP – the experience in months of the 
developer; 
MA – the admission mean for the specialist in 
the higher education institution 
M1 - the mean after the first year of study; it 
is interpreted as the level of basic knowledge 
necessary in the field of computer 
programming; 
M2 – the mean after the second year of study; 
it is interpreted as the level of specialized 
knowledge in the field of computer 
programming; 
LINES – the number of source lines in the 
developed module 

COMPLEXITY – the cyclomatic complexity 
of the developed module 
SID – an identifier for each specialist; it is 
not used as input but it is used for 
information retrieval. 
A model is needed for estimating the WORK 
variable, as dependent variable, using the 
other variables as independent variables. In 
order to refine the model, independent 
variables are ranked according to the 
magnitude of their influence in estimating the 
network output. 
The network has seven inputs for the 
independent variables values, one output for 
the estimated variable and a hidden layer 
consisting of 3 units, denoted N1, N2, and N3. 
The activation function is sigmoid and the 
learning algorithm uses backpropagation. 
When learning the network training 
continues until either an error threshold or a 
maximum iteration is reached. After the 
training is complete, the input-to-hidden 
weights are displayed in table 3. 

  
Table no.3 Input-to-hidden weights after network training 

 N1 N2 N3 
ERROR  -0.3450461 -10.05542 8.041933 
EXP  -1.499351 8.842965  -3.005034 
MA -7.080837 -0.2618634 -1.689898 
M1 10.5699 -4.063118 10.30558 
M2  -0.004750938 2.305199 -8.620939 
LINES -3.306778 -16.34974 11.92956 
COMPLEXITY 6.289078 -4.750813 -3.685927 
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In table 3 at the intersection between a line i 
and a column j, the weight wij shows the 
influence of the ith input in the activation of 
the jth neuron. As the weights can have both 
positive and negative values the absolute 
values become important as they show the 

magnitude of the influence. By summing up 
the influence from each input i the TAIi total 
absolute influence of that input is obtained. 
Ranking the list of variables by this indicator, 
an initial ordering is obtained as shown in 
table 4. 

 
Table no. 4. Absolute values for weights 

 N1 N2 N3 Sum of weights Rank
ERROR 0.345046 10.055420 8.041933 18.442399 3
EXP 1.499351 8.842965 3.005034 13.347350 5
MA 7.080837 0.261863 1.689898 9.032598 7
M1 10.569900 4.063118 10.305580 24.938598 2
M2 0.004751 2.305199 8.620939 10.930889 6
LINES 3.306778 16.349740 11.929560 31.586078 1
COMPLEXITY 6.289078 4.750813 3.685927 14.725818 4

 
As seen in table 4, the ranking shows that the 
ordering of variables associated to influence 
factors is: LINES, M1, ERROR, 
COMPLEXITY, EXP, M2, and MA. 

To take into account the relative influence, 
each weight in column j is divided by the 
sum of weights in that column, the resulting 
relative weights being shown in table 5. 

 
Table no 5  Relative influences from input units to hidden units 

 N1 N2 N3 
ERROR 0.011859 0.215647 0.170096 
EXP 0.051532 0.189645 0.063560 
MA 0.243363 0.005616 0.035743 
M1 0.363280 0.087137 0.217974 
M2 0.000163 0.049437 0.182342 
LINES 0.113652 0.350634 0.252323 
COMPLEXITY 0.216151 0.101885 0.077961 
TOTAL 1 1 1 

 
Summing up the value for each line i, the 
total relative influence TRIi of ith input is 
obtained. Input variables can be ranked by 
this criterion as shown in table 6.  
 
Table no. 6. Variable ranking by means of 
total relative influence ordering 

Variable TRI Rank 
ERROR 0.397601 3
EXP 0.304736 5
MA 0.284722 6
M1 0.668391 2
M2 0.231943 7
LINES 0.716609 1
COMPLEXITY 0.395998 4
 

As seen in table 6, the order of variables 
according to factor importance in the studied 
phenomenon is: LINES, M1, ERROR, 
COMPLEXITY, EXP, MA, and M2. As the 
neural network is assimilated to a nonlinear 
model, a conclusion can be drawn that there 
exists a nonlinear model to estimate WORK 
variable built on those independent variables. 
Ordering variables according to the resulting 
rank can lead to the decision of removing 
less important variables, obtaining: 
- a decreased complexity of the network 
leading to faster training and faster forward 
propagation 
- better understanding of influence factors 
ranking for the studied phenomenon 
- the result of variable ranking using neural 
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networks can be used as input for other 
processes such as model generation. 
Further, the variable list is reordered by their 
relative influences. The normalized total 

relative influence values, NTRI are computed 
and also the cumulative sum, shown in table 
7. 

  
Table no. 7.  Variable list ordered by TRI 

Variable TRI NTRI 
Cumulative 

sum 
LINES 0.716609 0.238870 0.238869531 
M1 0.668391 0.222797 0.461667 
ERROR 0.397601 0.132534 0.594200 
COMPLEXITY 0.395998 0.131999 0.726200 
EXP 0.304736 0.101579 0.827778 
MA 0.284722 0.094907 0.922686 
M2 0.231943 0.077314 1.000000 
TOTAL 3 1 - 

 
The chosen variables are those with the 
cumulative sum less than 0,85: LINES, M1, 
ERROR, COMPLEXITY, EXP. 
Taking decisions based on the neural 
networks is desired, but they lack in 
transparency. It is difficult to argument a 
decision to another person based on a neural 
network because even if the inputs and 
outputs are very clear for the majority of the 
specialists, the transformations suffered by 
the input data is hard to both to interpret and 
explain. A regression model in the classical 
acceptance, seen as an analytic expression is 
far more explicit. It may not have the same 
performance as a neural network but it is 
transparent and can be more easily 
interpreted and explained. 
Refining the neural network reduces the 
number of inputs necessary for estimation. If 
the network is not further used for 
estimation, the remained variables are used 
as input for model generation, using a model 
generator from a certain model class. If also a 
neural network is used for estimation, a 
second network is built having as inputs, the 
variables obtained from refinement, training 
is done and then validation is performed by 
comparing the initial network error with the 
second network error to see if the second 
network performance is acceptable. 
 
4. Conclusions 
The proposed method is used directly for the 

refinement of any software quality model in 
which a list with many variables has been 
defined, collecting of all data is done 
automatically and the precision of the 
estimates is kept in an interval when a sublist 
of variables is used. 
To trust neural network based refinement 
methods, the analysts which build software 
metrics will use classical refinement methods 
simultaneously. Results are compared and it 
is observed that neural network based 
refinements are most of the time more 
precise. The analyst will use just neural 
networks only after validation. 
Neural network based refinement is an 
iterative process, the performance criterion 
being given by the errors the refined model 
generates as presented in [IVAN08]. 
Neural network based refinement is a new 
research area and the study of refined models 
must be further developed. The neural 
network based refinement technologies will 
be further developed including other types of 
neural networks. 
If the current research used homogenous sets 
of  C++ programs, research must be extended 
for heterogeneous sets of programs as 
problem typology and programming 
languages. 
All the refinement techniques are 
implemented in an open software application 
that is enriched with new refinement 
components for each development stage. The 
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same way the modelbase is developed, 
software must be designed for refined model 
management, for user problem definition and 
for the study of real life behavior of 
refinement models. 
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